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Fig. 12. Spatial variation of total discontinuity region field for large
refractive index contrast.

one of the following becomes necessary: distributed feedback, a
nonuniform gain profile according to the Bragg diffraction rule,
or use of a Fabry—Perot resonator. Moreover, the gain region
must be hundreds of wavelengths long, which is computationally
prohibitive for the MoM at present.
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Toward a Unified Efficient Algorithm for
Characterizing Planar Periodic Waveguides
and Their Applications to MIC
and MMIC Circuits

Ké Wu, Pierre Saguet, and André Coumes

Abstract —An efficient new algorithm (modified three-dimensional
spectral-domain solution with “modal spectrum”) applied to a variety of
planar waveguides with periodically loaded stubs is achieved. In this
paper, slow-wave propagation characteristics .and their mechanism of
both symmetrically and asymmetrically loaded periodic structures with
lossy dielectric layer such as finline and coplanar waveguides (CPW’s)
are investigated. Using two sets of familiar basis functions, the conver-
gence behavior of the high-speed numerical computation is presented
toward a unified efficient algorithm. Many important features such as
passband and stopband phenomena related to cutoff and resonant
frequencies are discussed in detail based on numerical results, which
are compared with measured results obtained by transmission line
experimental procedures

I. INTRODUCTION

With increasing development of millimeter-wave transmission
line media and monolithic integrated circuit technologies, there
has been growing interest in the properties of hybrid (nonuni-
form) structures in the transverse section as well as the longitu-
dinal section to realize a more compact package, easier serial
implementation, and wider monomode operation. Many planar
or quasi-planar waveguides such as finlines and suspended
striplines have been suggested and investigated in the frequency
range 10 ~ 150 GHz. Little or rather limited iriformation about
the nonuniform longitudinal structures has been published, for
example, information relating to periodically loaded lines.

On the other hand, coplanar waveguide (CPW) and finline
MIS (metal-insulator—-semiconductor) structures proposed and
analyzed recently by several authors [1]-[S] in an attempt to
realize the phase shifters, delay lines, and electronically variable
filters make it possible to reduce significantly the component
dimensions due to the slow-wave propagation with possible
smaller losses. However, the question concerning an efficient
slow-wave mode excitation and miniature interconnection of
circuits will need to be addressed.

One way to obtain a slow wave is to guide the wave in a
direction away from the desired axial direction and to use the
axial components. It should be pointed out that a main mecha-
nism of obtaining a slowing down (high €. = (A, /A gige)?) of
propagation is to store the electric and magnetic energy sepa-
rately in space whether it is transversal or longitudinal. Exam-
ples of such structures include the MIS, helix, meander interdig-
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ital, and other periodically loaded lines. A number of contribu-
tions to classic periodic waveguide and coaxial lines for the
application of travelling wave tubes and so on have been pub-
lished [6], [7] wherein the static field or quasi-TEM conditions
were assumed. As early as 1984, only the network analytical
method [8] was used to investigate theoretically the passband
and stopband properties of single symmetrically loaded periodic
stripline and finline. Since then, a new efficient hybrid solution
to these structures, being similar to the spectral-domain analysis
of periodically nonuniform microstrip lines [9], [10], has been
reported together with experimental results [11], [12].

Until now, no detailed studies on slow-wave propagation and
cutoff resonance phenomena have been reported related to
passband and stopband in these types of structures, especially in
asymmetrically and coupled loaded planar waveguides, which
have received considerable attention for the application of wider
bandwidth couplers and high-quality filters. Accordingly, a full-
wave analysis with a comprehensive algorithm is needed for
determining the dispersion characteristics.

In this paper, a modified three-dimensional spectral-domain
approach is presented in detail to analyze the characteristics of
planar periodically loaded structures. It should be noted that a
new concept, called modal spectrum, with respect to harmonic
waves in the propagation direction is introduced in the analysis;
that is, the harmonic wave variation due to the periodic stubs
can efficiently be regarded as the natural Fourier development.
Consideration of such a fact leads to a considerable alleviation
of analytical formulation and numerical computation of the
eigen-problems. Specific bidimensional basis functions with
completely orthonormal series guarantee fast convergence be-
havior without spurious solutions. Compared with the method
described in [9], [10], this analysis presents an easy-to-read way
in which the application of Galerkin’s technique becomes more
convenient.

Mode propagation in both symmetrically and asymmetrically
loaded periodic structures is described and some physical mech-
anisms are clarified. Slow-wave and loss properties, as well as
passband and stopband characteristics, related to the cutoff and
resonant frequencies are discussed, and calculated results are
compared with measured results.

II. THEORETICAL FORMULATION

Several examples of periodically inhomogeneous suspended
stripline and finline with single and coupled stubs in the H and
E planes are shown in Figure 1. As demonstrated in [9] and [10],
there exist many possible shapes of periodic geometries, for
example, triangular and sinusoidal.

In the following, the principle of the modified three-dimen-
sional spectral-domain approach will be demonstrated for two
kinds of lossy periodic structures (finline and coplanar wave-
guide). Although in our analysis only these lines are considered,
the theoretical approach can readily be extended to other peri-
odicaily loaded waveguides. The loss of the diclectric layer is
considered because the periodic strip conductors can be placed
on a lossy semiconductor (GaAs, Si substrates for examples) in
the case of interconnection with other monolithic elements. It is
assumed here that the metallization has vanishing thickness, the
substrate holding grooves are neglected, and the periodic stubs
extend to infinity in the + z directions. The theoretical formula-
tion described in detail in [11] leads to

(Y,-Y)aB,E(a,{,)
a’+ B}

(Yeaz + YhBrzl)E-x(a’ {n)
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Here B, is the propagation constant of the dominant harmonic
in the Floquet representation, a is the Fourier factor, and ¢,
represent the higher order harmonics due to the periodically
loaded stubs. These could be regarded as the “modal spectrum”
in the Fourier sense or the “natural Fourier transform” in a
half-periodic cell (p /2).

This final formulation (a set of spectral Green’s functions) is
identical to that of the immittance spectral-domain technique
which leads to the final coupled equations by means of a
transmission line procedure in the transform coordinates. Y, and
Y, are the total spectral LSM/LSE immittance at the disconti-
nuity interface [13]. Nevertheless, the field components can be
expressed in concrete semianalytical form with this analysis; the
advantage of this point consists in the facility of field and power
computations.

III. NumERicaAL COMPUTATION

It remains to set bidimensional basis functions for Galerkin’s
technique, which could be said to be a key step for this method
owing to the variational nature of the approach; thé efficiency
and accuracy of this method depend greatly on the choice of
basis functions. The principle of such a choice is to satisfy the
boundary conditions and avoid the spurious solutions. Accord-
ingly, a set of completely orthonormal series such as the familiar
triangular, Chebyshev, and Legendre functions should be used.

Unlike the network analysis method [8] for the investigation
of periodic planar lines, the unknown aperture field can effi-
ciently be divided into two directional field components (x —z);
also the field quantities are directly expressed in terms of
Fourier series. Thus it is more convenient to apply the Galerkin’s
procedure in this method. In this procedure, the unknown
aperture field can be expanded in terms of the appropriate basis
functions. Substituting E, and E, in the Fourier form as well as
J, and J, and taking inner products between them, a nontrivial
solution for the propagation constant in the periodically loaded
structure can be obtained by setting the determinant of the
coefficient matrix M(B,) equal to zero:

Det [M(By)] = 0.

Up to this stage, we have to select carefully the basis functions.
Two different regions, S; and S,, are devided corresponding to
s;<x<s;+w; and lzI<p/2 for S; and to s, <x <S5, +w,
and |zl < d /2 for S, (see Fig. 1).

According to the field polarization in the aperture, the basis
functions to be used for the TE mode may differ from those for
the TM mode. In any case, we can define “guided” basis
functions in S, and “stored” basis functions in S, by taking
z-harmonic coupling into account; both terms (guided and stored)
refer to the different roles of the two regions. In fact, a trans-
verse resonance should take place in S,, but §, serves as a
channel in which energy is exchanged with the adjacent regions
S, (propagation).
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Fig. 1. Iliustration of E- and H-plane circuits for lossy periodic struc-
tures. (a) E- and H-plane configurations of periodic circuits. (b) Electric
field patterns of periodic coplanar line (CPW) with arbitrarily located
stubs. §; and §, are the two subregions in the aperture of a periodic
cell. R

In this paper, we set the basis functions in two subregions in .

terms of the multiplication of f(x) and g(2):
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where the superscripts I and II denote the subregion repre-

sented in the aperturé. In both regions, the basis functions can

be established as follows. For convenience, a set of familiar

triangular functions in consonance with Itoh’s argument are

used for high-speed computation in seeking an efficient algo-

rithm. With the above considerations in mind, the following set
. of functions are employed:
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No edge terms (—1/ 2) are required in the context of functions
g(z):
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Obviously, all of basis functions to be described above in the
form of complete series are designed to provide an accurate and
unified efficient algorlthm On the other hand, they can ensure
field continuity when w; is equal to w, (umform case); as such,
it means that the “guided” basis functions must be identical to
the “stored.”

_In this way, the bidimensional dlscontmulty boundary condh-
tions can be treated by a linear combination of such basis
functions with an asymptotic propérty. The choice of basis
functions depends not only on the boundary conditions but also
on the propagation mode,!behaV10r (The TE mode and /or TEM

"mode for single and coupled slots are dominant along these

structures. It is noted that the TM mode should occur only in
the resonant state.) This cons1derat10n can ensure both mag-
netic walls at z = tp/2and 5, <x< 5+ Wy

For the convenience of dlSCHSSlOl’l numerical results glven
throughout this paper are obtamed for d;=8 mm, d,=0.66
mm, and d;=142 mm in WR-90 waveguide with dielectric

-substrate e, = 2:22. The fast convergence behavior can be ob-
served by using a low basis function number for most of the

cases. We make use of N,y ,=N,; ;=2 and n=>35, which may
be appropriate in all practical cases.

~1V. NuMericaL REsULTs Anp DiscussioN

The main principle for obtaining a slow wave is to store the
electric and magnetic energy separately in space. Thus, MIS
(transverse space operation) structures and periodic structures
(longitudinal space operation) are :employed to generate the
slowing down of propagation in a certain frequency range. In
this paper, the slow-wave phenomena observed in the passband
by both experimental and theoretical analysis could be explained

"as the coupling of higher order modes in each periodic cell.

Note that electric and magnetic fields are concentrated respec-
tively in the smaller slot (w,) and the larger slot (w,).

At and beyond the resonant frequency point, all periodic cells
can effectively be regarded as cascaded coupled cavities where
the stubs. play a significant role.

Fig. 2 illustrates the dispersion characteristics of periodic
finlines with arbitrarily located stubs. The comparison between
measured and calculated results shows a very good agreement
over the passband range, which validates this method. It can be
seen that the passband is limited by two points: cutoff and
resonant frequencies due to shielded waveguide and periodic
stubs. The former seems to be constant (approximately equal to
that of the corresponding uniform structure). Indeed, the influ-
ence of periodic stubs becomes negligible near the cutoff point.
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Fig. 2. Dispersion characteristics of periodic finlines with arbitrarily
located stubs: w; = 0.5 mm, w, = 4.5 mm, s; = 4.83 mm, p =3 mm.

On the other hand, by moving the stubs from s, =2.83 mm
(symmetric case) to s, =4.83 mm (offset case) the resonant
frequency goes down considerably. Another interesting phe-
nomenon is that the resonant frequency can effectively be
changed by adjusting the period length without varying the
dispersion characteristics over the passband range unless the
frequency is in the shadow of resonance.

The resonance phenomenon arises in two cases:

5,—8,=C(2k-1)Ar/4
and/or
wy,—w;—8s,=CQ2k-1)r/4
p=ni/2 (k,n=1,2,3,--+).

The coefficient C is determined by geometric conditions. It can
easily be seen that the passband and stopband will occur period-
ically with the frequency.

V. CoNCLUSION

A new concept called modal spectrum in the propagation
direction has been introduced and successfully applied in the
theoretical analysis. It makes possible the direct use of the
three-dimensional spectral-domain approach in both symmetri-
cally and asymmetrically loaded periodic structures. Several
examples based on this unified algorithm illustrate the slow-wave
phenomenon as well as passband and stopband behavior related
to the cutoff and resonant frequencies. The dielectric losses can
be involved.
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On the Calculation of Conductor Loss on Planar
Transmission Lines Assuming Zero
Strip Thickness

Peter Heitkdmper and Wolfgang Heinrich

Abstract —The incompatibility of the zero-strip-thickness assumption
with conductor loss calculation based on the common perturbation
approach is addressed. Numerical results are shown that demonstrate
the unbounded behaviour of the attenuation constant in this case. This
observation is of specific interest because it applies to various data on
loss given in the literature.

I. THE PROBLEM

Conductor loss on planar transmission lines such as mi-
crostrip, coplanar waveguide, and slotline is usually calculated
by means of a perturbation approach. One starts from an
analysis of the lossless waveguide and then determines the
attenuation from the corresponding surface currents on the
conductors. Assuming the tangential magnetic field to remain
approximately unchanged by the losses, one arrives at the well-
known formula

1)

where P, denotes the dissipated power per unit length, R, the
surface resistance of the conductors, H, the tangential magnetic
field, and C the integration path alohg the contour of the
conductors. Consequently, for the attenuation constant a,
caused by the conductor losses, one has

1 P

a, ===

2 P,

1 .
g=5&ﬂmﬁm

e

with P, being the total power transported in the longitudinal
direction along the waveguide. Clearly, such a procedure makes
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