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Fig. 12. Spatial variation of total discontinuity region field for large
refractive index contrast.

one of the following becomes nec~ssary: distributed feedback, a
nonuniform gain profile according to the Bragg diffraction rule,

or use of a Fabry-Perot resonator. Moreover, the gain region

must be hundreds of wavelengths long, which is computationally

prohibitive for the MoM at present.
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Toward a Unified Efficient Algorithm for
Characterizing Planar Periodic Waveguides

and Their Applications to MIC
and MMIC Circuits

K6 Wu, Pierre Saguet, and Aridr6 Coumes

Abstract —An efficient new algorithm (modified three-dimensional
spectral-domain solution with “modal spectrum”) applied to a variety of
planar waveguides with periodically loaded stubs is achieved. In tlhis

paper, slow-wave propagation characteristics ,and their mechanism of
both symmetrically and asymmetrically loaded periodic structures with

Iossy dielectric layer such as finline and coplanar waveguides (CPW%)

are investigated. Using two sets of familiar basis functions, the conver-

gence behavior of the high-speed numerical computation is presented
toward a unified efficient algorithm. Many important features such as
passband and stopband phenomena related to cutoff and resormrrt

frequencies are discussed in detail based on numerical results, which
are compared with measured results obtained by transmission line

experimental procedures

I. INTRODUCTION

With increasing development of millimeter-wave transmission

line media and monolithic integrated circuit technologies, there

has been growing interest in the properties of hybrid (nonuni-

form) structures in the transverse section as well as the longitu-

dinal section to realize a more compact package, easier serial
implementation, and wider monomode operation. Many planar

or quasi-planar waveguides such as finlines and iuspended
striplines have been suggested and investigated in the frequency
range 10-150 GHz. Little or rather limited information about
the nonuniform longitudinal structures has been published, for
example, information relating to periodically loaded lines.

On the other hand, coplanar waveguide (CPW) and firdiine
MIS (metal–insulator–semiconductor) structures proposed and

analyzed recently by several authors [1]-[5] in an attempt to

realize the phase shifters, delay lines, and electronically variable

filters make it possible to reduce significantly the component

dimensions due to the slow-wave propagation with possible

smaller losses, However, the question concerning an efficient
slow-wave mode excitation and miniature interconnection of
circuits will need to be addressed.

One way to obtain a slow wave is to guide the wave in a
direction away from the desired axial direction and to use the
axial components. It should be pointed out that a main mecha-
nism of obtaining a slowing down (high Eeff = (A.ai, /Amide )2) of
propagation is to store the electric and magnetic energy sepa-
rately in space whether it is transversal or longitudinal. Exam-

ples of such structures include the MIS, helix, meander interdig-
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ital, and other periodically loaded lines. A number of contribu-

tions to classic periodic waveguide and coaxial lines for the

application of traveling wave tubes and so on have been pub-

lished [6], [71 wherein the static field or quasi-TEM conditions
were assumed. As early as 1984, only the network analytical

method [8] was used to investigate theoretically the passband

and stopband properties of single symmetrically loaded periodic
stripline and finline. Since then, a new efficient hybrid solution
to these structures, being similar to the spectral-domain analysis

of periodically nonuniform microstrip lines [91, [10], has been
reported together with experimental results [11], [12].

Until now, no detailed studies on slow-wave propagation and

cutoff resonance phenomena have been reported related to

passband and stopband in these ty?es of structures, especially in

asymmetrically and coupled loaded planar waveguides, which

have received considerable attention for the application of wider
bandwidth couplers and high-qbality filters. Accordingly, a full-

wave analysis with a comprehensive algorithm is needed for

determining the dispersion characteristics.
In this paper, a modified three-dimensional spectral-domain

approach is presented in detail to analyze the characteristics of
planar periodically loaded structures. It should be noted that a
new concept, called modal spectrum, with respect to harmonic
waves in the propagation direction is introduced in the analysis;

that is, the harmonic wave variation due to the periodic stubs

can efficiently be regarded as the natural Fourier development.

Consideration of such a fact leads to a considerable alleviation

of analytical formulation and numerical computation of the

eigen-problems. Specific bidimensional basis functions with

completely orthonormal series guarantee fast convergence be-
havior without spurious solutions. Compared with the method

described in [9], [10], this analysis presents an easy-to-read way

in which the application of Galerkin’s technique becomes more
convenient.

Mode propagation in both symmetrically and asymmetrically
loaded periodic structures is described and some physical mech-
anisms are clarified. Slow-wave and loss properties, as well as

passband and stopband characteristics, related to the cutoff and
resonant frequencies are discussed, and calculated results are

compared with measured results.

II. THEORETICAL FORMULATION

Several examples of periodically inhomogeneous suspended
stripline and finline with single and coupled stubs in the H and
E planes are shown in Figure 1. As demonstrated in [9] and [101,

there exist many possible shapes of periodic geometries, for
example, triangular and sinusoidal.

In the following, the principle of the modified three-dimen-

sional spectral-domain approach will be demonstrated for two
kinds of Iossy periodic structures (finline and coplanar wave-

guide). Although in our analysis only these lines are considered,

the theoretical approach can readily be extended to other peri-

odically loaded waveguides. The loss of the dielectric layer is
considered because the periodic strip conductors can be placed
on a lossy semiconductor (GaAs, Si substrates for examples) in
the case of interconnection with other monolithic elements. It is
assumed here that the metallization has vanishing thickness, the
substrate holding grooves are neglected, and the periodic stubs
extend to infinity in the * z directions. The theoretical formula-
tion described in detail in [11] leads to

(1’&+Y,/3:)ix(a,Jn) (~- YJa&jz(cY,(J =j(a,(n)

+ xd+p; d + p:

where

S c aperture

(m+ O.’5K)r

{

~ = O, odd mode (electric wall)
~=

b’ 1, even mode (magnetic wall)

Here PO is the propagation constant of the dominant harmonic

in the Floquet representation, a is the Fourier factor, and ~n

represent the higher order harmonics due to the periodically
loaded stubs. These could be regarded as the “modal spectrum”
in the Fourier sense or the “natural Fourier transform” in a
half-periodic cell (p/2).

This final formulation (a set of spectral Green’s functions) is

identical to that of the immittance spectral-domain technique
which leads to the final coupled equations by means of a

transmission line procedure in the transform coordinates. Y. and

Yh are the total spectral LSM/LSE immittance at the disconti-

nuity interface [13]. Nevertheless, the field components can be

expressed in concrete semianalytical form with this analysis; the
advantage of this point consists in the facility of field and power

computations.

III. NUMERICAL COMPUTATION

It remains to set bidimensional basis functions for Galerkin’s
technique, which could be said to be a key step for this method

owing to the variational nature of the approach; th~ efficiency

and accuracy of this method depend greatly on tli~ choice of

basis functions. The principle of such a choice is to satisfy the

boundary conditions and avoid the spurious solutions. Accord-

ingly, a set of completely orthonormal series such as the familiar

triangular, Chebyshev, and Legendre functions should be used.
Unlike the network analysis method [8] for the investigation

of periodic planar lines, the unknown aperture field can effi-
ciently be divided into two directional field components (x-z);
also the field quantities are directly expressed in terms of
Fourier series. Thus it is more convenient to apply the Galerkin’s
procedure in this method. In this procedure, the unknown

aperture field can be expanded in terms of the appropriate basis
functions. Substituting EX and E= in the Fourier form as well as

J, and JZ and taking inner products between them, a nontrivial

solution for the propagation constant in the periodically loaded

structure can be obtained by setting the determinant of the
coefficient matrix M(~o) equal to zero:

Det[A4(~o)]=0

Up to this stage, we have to select carefully the basis functions.
Two different regions, SI and S2, are devided corresponding to
S1<X<S1+W1 and lzl<p/2for Sl andtosz<x<sz+wz

and Iz I < d/2 for S2 (see Fig. 1).
According to the field polarization in the aperture, the basis

functions to be used for the TE mode may differ from those for

the TM mode, In any case, we can define “guided” basis
functions in SI and “stored” basis functions in S2 by taking

z-harmonic coupling into account; both terms (guided and stored)

refer to the different roles of the two regions. In fact, a trans-

verse resonance should take place in S2, but S1 serves as a

channel in which energy is exchanged with the adjacent regions
S2 (propagation).
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Fig. 1. Illustration of E- and H-plane circuits for 10SSYperiodic struc-
tures. (a) E- and H-plane configurations of periodic circuits. (b) Electric
field patterns of periodic coplanar line (CPW) with arbitrarily located
stubs. ,$ and S2 are the two subregions in the aperture of a periodic
cell.

In this paper, we set the basis functions in two subregions in
terms of the multiplication of ~(x) and g(z):

where the superscripts I and II denote the subregion repre-
sented in the aperture. In both regions, the basis functions can

be established as follows. For convenience, a set of familiar
triangular functions in consonance with Itoh’s argument are

used for high-speed computation in seeking an efficient algo-

rithm. With the above considerations in mind, the following set

of functions are employed:

[( im x – S1,2)
Cos 1

1 ‘i, z
, f;Jl = J i =0,2,4,”..

I r~ 72 ‘

H.l– -&(x -sl,z)-l

I

and

‘in[i=(:::l’2)1

m’ ‘=1’3’5’”””

Cos[im(:i:’’z)l
.f:,=l=, i=,,’,,,

and

‘in[i%:’’z’l/=, i.~,b,fj,...

,,
No edge terms (– 1/2) are required in the context of functions
g(z}

()

jrrz
g~j(z) =g~~(z)=sin —

P

( ,)jrrz
forj=l,3,5, . . . and cos — forj= 0,2,4,..

P

‘( )

j~z
g~~(z)=g~j(z) =sin ,7

()

jrz
forj= 2,4,6, ..., and cos — forj=l,3,5,. <..

P

Obviously, all of basis functions to be described above in the
form of complete series are designed to provide an accurate and

unified efficient algorithm. On the other hand, they can ensure
field continuity when WI is equal to Wz (uniform easel as such,
it means that the “guided” basis functions must be identical to

the “stored.”
In this way, the bidimensional diswntinuity boundary ccmdi-

tions can be’ treated by a linear combination of such basis
functions with an asymptotic property. The choice of basis

functions depends not only on the boundary conditions but also

on the propagation rnodt ,behavior (The TE mode and/or TEM
mode for single &id coupled slots are dominant along these
structures. It is nbted that the TM mode should occur only in

the resonant state.) This consideration can ensure both mag-
netic walls at z = kp/2 and SI < x < SI + W1.

For the convenience of discussion, numerical results given

throughout this paper are obtained for dl = 8 mm, dz = 0.66
mm, and d~ = 14.2 mm in WR-90 waveguide with dielectric
substrate k, = 2.22. The fast convergence behavior can be cb-

served by using a low basis function number for most of the

cases. We make use of N.l z = NZI,2 = 2 and n =5, which may

be appropriate in all practical cases.

~IV, NUMERICAL RESULTS AND DISCUSSION

The main principle for obtaining a slow wave is to store the

electric and magnetic energy separately in space. Thus, MIS
(transverse space operation) structures and periodic structures

(longitudinal space operation) are employed to generate the
slowing down of propagation in a certain frequency range. In
this paper, the slow-wave phenomena observed in the passband
by both experimental and theoretical analysis could be explained

as the coupling of higher order modes in each periodic cell.
Note that electric and magnetic fields are concentrated respec-

tively in the smaller slot (w,) and the larger slot (W2).

At and beyond the resonant frequency point, all periodic, cells

can effectively be regarded as cascaded coupled cavities where
the stubs play a significant role.

Fig. 2 illustrates the dispersion characteristics of periodic

finlines with arbitrarily located stubs. The comparison between
measured and calculated results shows a very good agreement
over the passband range, which validates this method. It can be
seen that the passband is limited by two points: cutoff and
resonant frequencies due to shielded waveguide and periodic

stubs. The former seems to be constant (approximately equal to

that of the corresponding uniform structure). Indeed, the influ-
ence of periodic stubs becomes negligible near the cutoff point. ,
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Fig. 2. Dispersion characteristics of periodic finlines with arbitrarily
located stubs WI= 0.5 mm, W2= 4.5 mm, SI = 4.83 mm, p = 3 mm.

On the other hand, by moving the stubs from Sz = 2.83 mm

(symmetric case) to Sz = 4.83 mm (offset case) the resonant
frequency goes down considerably. Another interesting phe-
nomenon is that the resonant frequency can effectively be

changed by adjusting the period length without varying the
dispersion characteristics over the passband range unless the
frequency is in the shadow of resonance.

The resonance phenomenon arises in two cases:

sl–s2=C(2k–l)A\4

and/or

Wz – WI – SI = C(2k –l)A/4

p=nA/2 (k, n=l,2,3,.. ).

The coefficient C is determined by geometric conditions. It can

easily be seen that the passband and stopband will occur period-

ically with the frequency.

V. CONCLUSION

A new concept called modal spectrum in the propagation

direction has been introduced and successfully applied in the
theoretical analysis. It makes possible the direct use of the

three-dimensional spectral-domain approach in both symmetri-
cally and asymmetrically loaded periodic structures. Several
examples based on this unified algorithm illustrate the slow-wave
phenomenon as well as passband and stopband behavior related
to the cutoff and resonant frequencies. The dielectric losses can
be involved.
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On the Calculation of Conductor Loss on Planar
Transmission Lines Assuming Zero

Strip Thickness

Peter Heitkamper and Wolfgang Heinrich

Abstract —The incompatibility of the zero-strip-thickness assumption
with conductor loss calculation hased on the common perturbation

approach Is addressed. Numerical results are shown that demonstrate
the unbounded behaviour of the attenuation constant in this case. This
observation is of specific interest because it applies to various data on
loss given in the literature.

I. THE PROBLEM

Conductor loss on planar transmission lines such as mi-

crostrip, coplanar waveguide, and slotline is usually calculated
by means of a perturbation approach. One starts from an

analysis of the Iossless waveguide and then determines the

attenuation from the corresponding surface currents on the
conductors. Assuming the tangential magnetic field to remain
approximately unchanged by the losses, one arrives at the well-
known formula

PC=; R,~ltit12. ds (1)
c

where PC denotes the dissipated pow~r per unit length, R, the

surface resistance of the conductors, 271 the tangential magnetic

field, and C the integration path along the contour of the

conductors. Consequently, for the attenuation constant aC
caused by the conductor losses, one has

(2)
L rz

with PZ being the total power transported in the longitudinal
direction along the waveguide. Clearly, such a procedure makes
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